
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261351606

A Novel Approach for Constructing Emulator for Microsoft Kinect XBOX 360

Sensor in the .NET Platform

Conference Paper · January 2013

DOI: 10.1109/ISMS.2013.19

CITATIONS

6
READS

36

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Mental Health Research View project

Mohammad Islam

Virginia Polytechnic Institute and State University

12 PUBLICATIONS 28 CITATIONS

SEE PROFILE

Sazzadur Rahaman

Virginia Polytechnic Institute and State University

5 PUBLICATIONS 13 CITATIONS

SEE PROFILE

Rakibul Hasan

Indiana University Bloomington

2 PUBLICATIONS 6 CITATIONS

SEE PROFILE

Ridwan Rashid Noel

University of Texas at San Antonio

3 PUBLICATIONS 7 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sazzadur Rahaman on 04 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261351606_A_Novel_Approach_for_Constructing_Emulator_for_Microsoft_Kinect_XBOX_360_Sensor_in_the_NET_Platform?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261351606_A_Novel_Approach_for_Constructing_Emulator_for_Microsoft_Kinect_XBOX_360_Sensor_in_the_NET_Platform?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mental-Health-Research-3?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Islam35?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Islam35?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Virginia_Polytechnic_Institute_and_State_University?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Islam35?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sazzadur_Rahaman?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sazzadur_Rahaman?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Virginia_Polytechnic_Institute_and_State_University?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sazzadur_Rahaman?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rakibul_Hasan9?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rakibul_Hasan9?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indiana_University_Bloomington?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rakibul_Hasan9?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ridwan_Rashid_Noel?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ridwan_Rashid_Noel?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Texas_at_San_Antonio?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ridwan_Rashid_Noel?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sazzadur_Rahaman?enrichId=rgreq-caa24e58355d1d39dce34f70eb7d1f3e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1MTYwNjtBUzozNTgwNTY3OTQ4MzY5OTRAMTQ2MjM3ODgwMDQ3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Novel Approach for Constructing Emulator for Microsoft Kinect XBOX 360
Sensor in the .NET Platform

Mohammad Raihanul Islam, Sazzadur Rahaman, Rakibul Hasan, Ridwan Rashid Noel, Asif Salekin,

Hasan Shahid Ferdous, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Bangladesh

{raihan 2108, sazzad14, rakib cse 062, noel hbk 008, asalekin, webtonmoy}@yahoo.com

Abstract—The Microsoft Kinect sensor has brought a new
era of Natural User Interface (NUI) based gaming and the
associated SDK has provided access to its powerful sensors,
which can be utilized in many ways, especially in research
purposes. We have already seen its use in robotics, developing
assistive technologies, and augmented reality, aside from gam-
ing. Thousands of people around the world are playing with its
built-in multimodal sensors, but still a complete emulator for
the Kinect sensor device is lacking, thus requiring a physical
device to do any experiments with it. In this work, we have
come forward with a novel design of an emulator for the
Kinect sensor and its implementation in the .NET platform
using the Microsoft Kinect SDK. We have demonstrated the
applicability of our system through detailed software design,
code descriptions to incorporate this emulator in user’s own
code, and video demonstration of our proposed system.

Keywords-Kinect sensor; emulator; .NET platform.

I. INTRODUCTION

Kinect is a motion sensing input device by Microsoft for

the Xbox 360 video game console and Windows PCs. It

allows the user to interact with the XBOX gaming machine

without using a game controller, enabling the you are
the controller paradigm. The concept of Kinect is base

on Natural User Interface (NUI) - controlling the devices

through gestures and voice commands. After its release

on November, 2010, the Kinect holds the Guinness World

Record of being the “fastest selling consumer electronics

device”, as a total of 8 million units are sold in its first 60

days. 18 million units of the Kinect sensor had been shipped

as of January 2012 [1].

The Microsoft Kinect device has multimodal sensors - an

RGB camera, an infrared depth sensor, and a microphone

array to capture the surrounding environment. It runs with

proprietary software which provides full-body 3D motion

capture, facial recognition, and voice recognition capabili-

ties. The applications using Kinect sensor access the sensor

data through NUI API library interface calls (Fig. 1). To

facilitate the application development and enhance research

scopes using Kinect, Microsoft has released Kinect Software

Development Kit (SDK) for Windows 7 on June 2011.

Another open source SDK named Open Kinect was there

since November 2010. So lots of researchers and enthusi-

astic students have worked with the Kinect sensor device

exploiting its use it many areas.

One major challenge in working with a sensor device like

Kinect is that we require the hardware in every stage of the

software development. Using Kinect, we are working with

raw sensor data, so many approaches require fine-tuning of

the code with empirical data values. We can say about one

practical challenge we faced when developing a PC mouse
control using Kinect software. We required adjusting the

software parameters painstakingly to make it work smoothly.

One of the major challenges in that project is that we always

required to work with the Kinect sensor to debug or tune our

code. The severity of the problem lies in the fact that we had

to do the same gestures again and again to test our code and

tune it. Again, we had only one device for our five member

team and the device costed about 100 USD, thus making the

problem more complex. We practically felt the necessity of a

emulator device for Kinect during that project development.

In computing, an emulator is a hardware or software or

both that can imitate the functions of a device or system in a

different system or device. In that process the second system

behave closely like the original system. We can use emula-

tors in many cases of software development. For example,

there is Android phone emulators to enable programmers to

develop software for android phones without requiring an

android phone to develop and test the application. There are

other emulators, like 8086 emulator, GPS emulator, etc. But

a complete emulator for the Kinect sensor it not available

till date. In this work, we are going to take the challenge

and provide one.

There has been some works on developing a Kinect

emulator before ours. Among them the most notable is

the Fakenect by Brandyn White [2] with his libfreenect

API. Fakenect was originally developed in python and it

works only in Linux and Mac OSX environment, so users

accustomed to Windows cannot use Fakenect directly. There

have been some modifications by different user groups for

Fakenect that could be supported in Windows too. It has

some unresolved issues about implementation and synchro-

nization. The original version of Fakenect does not include

the implementation of audio features of Kinect. Also, it did

not use any compression techniques in storing raw data, so

the recorded streams took too much space in a very short

2013 4th International Conference on Intelligent Systems, Modelling and Simulation

2166-0662/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMS.2013.19

1

Sensor Array

NUI Library

Audio Stream

Depth Stream Application D h S

Image Stream

Figure 1. Interaction between the Kinect software and hardware [4].

time. We will discuss about these issues and ways to solve

them in later sections of this paper.

In our work, we have focused to develop a Kinect

emulator using the Microsoft Kinect SDK for the .NET

platform so that people can integrate it and use seamlessly

with their existing code. We have recorded all the raw data

streams (including audio) from the device with necessary

compressions to reduce the amount of data files and then

redirected the recorded streams to make the system believe

that it is using the Kinect device instead of recorded data

from the storage drives. Our process is properly documented

and the users require to change only a few lines in their

code to switch between emulator mode and using real Kinect

devices.

The rest of the paper is organized as follows. Section II

familiarizes us with different sensors in the Kinect device

and their properties. We present out approach in building

a Kinect emulator briefly in Section III. In Section IV,

we describe the background knowledge and terminologies

required to understand our work. In Section V, we present

our approach to store the skeleton data, while In Section VI,

we present our contribution to store video and depth data.

We show our technique to store audio data in Section VII.

Finally we discuss about using our emulator in users’ own

code in the conclusion section.

II. KINECT SENSOR DESCRIPTIONS

We can see the logical interactions between the hardware

and the software components in Microsoft Kinect in Fig. 1.

Three types of data streams are available from the Kinect

sensor: 1) Image Stream, 2) Depth Stream, and 3) Audio

Stream. In this section, we summarize different properties

of these streams (Table I).

A. Image Stream

The RGB video stream uses 8-bit VGA resolution (640

X 480 pixels). Color data is available in the following two

formats:

• RGB color can be provided in 32-bit, linear

X8R8G8B8-formatted color bitmaps, in the sRGB

color space. An application must specify a color or

color YUV image while opening the stream.

• YUV color provides 16-bit, gamma-corrected linear

UY VY-formatted color bitmaps, where the gamma

correction in YUV space is equivalent to sRGB gamma

in RGB space. Since YUV stream uses 16 bits per pixel,

its memory requirement is smaller but YUV data is

available only at 640X480 pixel and at 15 fps [4].

Both color formats are computed from the same camera data,

so that the YUV data and RGB data represent the same

image.

B. Depth Stream

The depth sensor has an infrared laser projector with a

monochrome CMOS sensor, which is capable of capturing

depth data in 3D under any ambient light conditions. The

depth data stream provides frames in which each pixel

represents the Cartesian distance, in millimeters, from the

camera plane to the nearest object at that particular x and y

coordinate in the depth sensor’s field of view. The following

resolutions in depth data streams are available: 1) 640X480

pixels, 2) 320X240 pixels, and 3) 80X60 pixels.

There is another type of data available form Kinect called

Skeleton Data. Kinect can locate the twenty points of a

player’s body. The NUI Skeleton API of Kinect provides

information about these points of a person standing in

front of the Kinect sensor array. The data is provided to

application code as a set of points, called skeleton positions,

which compose a human skeleton [4].

C. Audio Stream

Kinect supports its audio features by implementing a

microphones array consisting of 4 microphones arranged

in a linear or L-shaped pattern. Implementing a set of

microphones has some significant benefit over a single

microphone, like capturing high quality audio, beam forming

and source localization and speech recognition facilities.

III. OUR APPROACH FOR BUILDING THE KINECT

EMULATOR

Microsoft has released their Kinect software development

kit (SDK) for Windows 7 on June 16, 2011 [4]. This SDK

has allowed the developers to write Kinect applications in

C++/ CLI, C#, or Visual Basic.NET. Developers around the

world are trying to use the capabilities of Kinect in different

fields. One of our previous works implementing Natural

User Interface (NUI) based classroom using Kinect has been

published in [5]. There are also some works based on Kinect

such as touch free exploration of medical image data [3],

tracking 3D position, orientation, and full articulation of a

human hand [6].

2

Table I
SENSOR CAPABILITIES OF MICROSOFT KINECT DEVICE

Sensor item Playable range

Color and depth stream 4 to 11.5 feet (1.2 to 3.5 meters)
Skeletal tracking 4 to 11.5 feet (1.2 to 3.5 meters)
Viewing angle 43◦ vertical by 57◦ horizontal field of view
Mechanized tilt range (vertical) ±28◦
Frame rate (depth and color stream) 30 frames per second (FPS)
Resolution, depth stream QVGA (320 x 240 pixel)
Resolution, color stream VGA (640 x 480 pixel)
Audio format 16-kHz, 16-bit mono pulse code modulation (PCM)
Audio input characteristics A four-microphone array with 24-bit analog-to-digital converter (ADC) and Kinect-

resident signal processing such as acoustic echo cancellation and noise suppression

����� ���	�
�
��
���� ���	�
�
��

��
����
���	�
�
��

�

�

�
�

�

���
������� ������� ��� ��
��� ��� ��
����

��� ����� ��� ��� �� !

		��� ���
�

��
��� ���
��
���� "��

#������� ���
���	�
�
��

#"$ %�&

��
���� ����
����

� "	���'
()�

������
����	
���� ���� � ��
��������� ���� � ��
����

��
#"$ ������ �� �* #"$
���� ���� �� �*��
#"$ � ��� �� �*

�����
���� ��� �� !� ��� �

+#)
()
,� � 	����
� ��
�����
-
���� .��
� ���
 / ������"'��

#��� ����

���
�� ����

��
��� ��
���

% ��� ��

������
 �����

Figure 2. Kinect software architecture [4].

In normal operations, a Kinect device needs to be con-

nected to the XBOX 360 or PC via USB port for the access

and manipulation of the data streams provided by Kinect.

Instead a Kinect emulator can be used, where a Kinect is not

needed physically. An emulator takes the form of a hardware

device and duplicates (or emulates) the functions of the

device in a different second device, so that the emulated

behavior closely resembles the behavior of the real device

or system. Using an emulator does not need the presence

of the original device. So, using a Kinect emulator, we

can record data one time and use the recorded data when

Kinect is not available to us. Reproducing results is easier in

Kinect emulator and it does not constraint one to real-time

performance. It allows one to record Kinect data and switch

between live and recorded modes easily and also reduces the

tedious job of giving the same human input several times

during software development.

To construct an emulator we have to capture these streams

of data and store it into proper format so that later, users can

use these data as if they have got these from a Kinect device.

We represent the complete software architecture of Kinect

in Fig. 2. Our contribution has been implemented between

the application and video and audio components shown by

the big red arrow in Fig. 2.

IV. PRELIMINARIES

In this section, we describe the basic technologies we

have used in our study. We describe our approach in data

compression and decompression, key frame, etc.

A. Data compression

In computer science and information theory, data com-

pression, source coding, or bit-rate reduction involves en-

coding information using fewer bits than the original rep-

resentation. Compression can be either lossy or lossless.

Lossy compression reduces bits by identifying marginally

important information and removing it. Lossless compres-

sion reduces bits by identifying and eliminating statistical

redundancy. No information is lost in lossless compression.

Thus when Lossless compressed data is decompressed, it

is possible to get back to the original data, but on the

other hand this claim is not true for the lossy compression.

We have used lossless data compression in our emulator to

produce the exact same data that a real Kinect device could

have offered.

B. LZW Compression/Decompression:

This is the most commonly used and the simplest type of

compression and decompression algorithm. There are mainly

3

two types of implementations in LZW compression - static

and dynamic compression.

1) Static Compression:: In static compression, we use a

fixed number of bits to represent every character while com-

pressing. The total number of bits we have at our disposal

is 32, which gives a total of 232, that is, 4, 294, 967, 295
possible entries in the dictionary. But in almost all cases

we do not get that much entries, so in most of the cases,

we use a constant number of bits and commonly set the

number of bits as 14. For example, in 14 bit format, ‘A’ can

be represented by 00000001000001.

2) Dynamic Compression:: Dynamic compression

changes the number of bits used to compress the data.

It starts with 9 bits for each new value, and goes up

until it reaches 32 or until the file ends. In this type of

compression we can set the size of the dictionary we have.

The dictionary begins with all the 256 ASCII codes. In

dynamic compression there is only one leading 0 in front

of each number. For example, in dynamic compression, ‘A’

can represented as 001000001.

C. Key frame:

In video compression, a keyframe, also known as an Intra
Frame, is a frame in which a complete image is stored in the

data stream. In video compression, only changes that occur

from one frame to the next are stored in the data stream, in

order to greatly reduce the amount of information that must

be stored. This technique capitalizes on the fact that most

video sources (such as a typical video stream from Kinect)

have only small changes in the image from one frame to the

next. Whenever a drastic change to the image occurs, such

as when the background scene changes, a keyframe must

be created. The entire image for the frame must be in the

output when the visual difference between the two frames

is so great that representing the new image incrementally

from the previous frame would be more complex and would

require even more bits than reproducing the whole image.

Aside from the keyframes, we need to store the difference

in color information from its preceding frame which, when

compressed can result in very small data size. We have used

this concept in our emulator to reduce the storage file size

for raw video data. To increase efficiency, we generated the

LZW dictionary for keyframes only and used it for other

frames. It reduced our algorithmic complexity greatly and

made our approach applicable in real-time.

D. Retrieving Data Streams from the Kinect Device

User applications can get the latest frame of image/depth/

skeletal data by calling a frame retrieval method and passing

a buffer. If the latest frame of data is ready, it is copied into

the buffer. If our code requests frames of data faster than

new frames are available, we can choose whether to wait

for the next frame or to return immediately and try again

later. The NUI API never provides the same frame of data

more than once. Applications can use either of the following

two usage models:

1) Polling Model: When using the polling model, the

application code opens the stream first. It then requests a

frame and specifies how long to wait for the next frame of

data (between 0 and an infinite number of milliseconds).

The request method returns when a new frame of data is

ready or when the wait time expires, whichever comes first.

Specifying an infinite wait causes the call for frame data to

block and to wait as long as necessary for the next frame.

When the request returns successfully, the new frame is

ready for processing. If the time-out value is set to zero,

the application code can poll for completion of a new frame

while it performs other work on the same thread. For exam-

ple, a native C++ application calls NuiImageStreamOpen()
method to open a color or depth stream and omits the op-

tional event. Managed code calls the ImageStream.Open()
function. To poll for the color and depth frames, native

C++ applications call NuiImageStreamGetNextFrame()
and managed code calls ImageStream.GetNextFrame().

2) Event Model: The event model supports the ability to

integrate retrieval of a image/depth/skeleton frame into an

application engine with more flexibility and more accuracy.

In this model, C++ application code passes an event handle,

for example, to NuiImageStreamOpen() method for image

data. When a new frame of image data is ready, the event

is signaled. Any waiting thread wakes and gets the frame of

skeleton data by calling NuiImageGetNextFrame(). During

this time, the event is reset by the NUI Image Camera API.

In the .NET model, Managed code uses the event mode

by hooking a Runtime.DepthFrameReady() method for the

depth stream or Runtime.ImageFrameReady() method for

the image stream to an appropriate event handler. When a

new frame of data is ready, the event is signaled and the

handler runs and calls ImageStream.GetNextFrame() to

get the frame.

V. SKELETON DATA

Here in this section we present our approach on storing

and retrieving the skeleton frame using our Kinect emulator.

We get the position of each body joint of the person under

consideration and then record it in the permanent storage

devices, for example, the hard disk drive.

We used the event driven technique to retrieve the

skeleton data and save it to file. When a skele-

ton frame is available and an event is triggered,

the void Nui GotSkeletonAlert() is invoked and an

instance of NUI SKELETON FRAME is retrieved from

NuiSkeletonGetNextFrame() function which contains the

coordinate of the body points and then the whole frame is

stored. We also record the time stamp difference from the

previous skeleton frame.

When retrieving this data and redirecting them to our

application instead of using the real Kinect device, we use

4

a thread to fetch data from that recorded file according

to timestamp and invoke that particular event with event

parameters passed manually in the same time gap as in

the original data. In this way the user code remains almost

transparent and only required to be changed in the Kinect

initialization part, where instead of Kinect initializing, we

are initializing our own thread for fetching data. The process

is documented in [7].

VI. VIDEO DATA AND DEPTH DATA

In the scope of void Nui GotVideoAlert() function, we

retrieve the video data and persist it. But there are several

issues we had to deal with while saving the video data. The

Issues are listed below:

• As Kinect device outputs the video frame in the mem-

ory and the operation of writing a frame from the

memory to a file is much slower than then frame

generation rate of the Kinect device, we used a buffer to

deal with the problem. Kinect writes data in the buffer

and a thread reads data from the buffer and writes to

the hard disk block by block.

• The size of the file where raw video frames are per-

sisted grows so fast that in few minutes it crossed 4 or

5 GB in size. So we had to compress the frames. In that

case we used LZW compression algorithm to compress

the data as discussed earlier. We could not use estab-

lished compression standards like .mp4, .flv, or .mpeg

as they will compress the frames with their proprietary

algorithms, can drop frames if necessary, includes their

own metadata, and they are not lossless. We need to be

very precise with the timestamp and metadata of the

frames we store so that we can reproduce it exactly as

it was recorded in the first place. So we used our own

code for storing video data.

• Writing frames in file itself is a relatively slow oper-

ation and the compression process make it slower and

it hugely influences the overall performance(frame rate

per second).

• The Dictionary is created only when a keyframe comes

and this made an viewable impact in performance but

still we require to improve it further.

• So finally we decided not to record all the frames but to

skip some of them and thus made it faster. The whole

process is shown on Figure 3.

Similar as for the video data, we retrieve the depth data

from the Nui GotDepthAlert() function and persist it.

When a depth frame event occurs, Nui GotDepthAlert()
retrieves the ready frame from the capture engine.

For both video and depth data, we recorded the received

frames along with time stamps. So the retrieving thread,

when using in our applications can invoke event calls with

precise timing as discussed in the skeletal data section

(Section V).

Table II
RIFF HEADER

Positions Field
Name

Size (Bytes) Sample
Value

1-4 chunkID 4 “RIFF”
5-8 ChunkSize 4 640022
9-12 Format 4 “WAVE”
13-16 subChunk1ID 4 “fmt”
17-20 subChunk1Size 4 16
21-22 AudioFormat 2 1
23-24 NumChannels 2 1
25-28 SampleRate 4 16000
29-32 ByteRate 4 32000
33-34 BlockAlign 2 2
35-36 BitsPerSample 2 16
37-40 subChunk2ID 4 “data”
41-44 subChunk2Size 4 640000
44 data subChunk2Size Audio Stream

VII. AUDIO DATA

In this section, we describe our approach to store and re-

trieve the audio data from Kinect. As previously mentioned,

Kinect audio features are supported by a microphone array.

Generally the microphone array consists of 4 microphones.

First we describe how use the Audio API to capture the

audio stream and then describe the method we use to store

source information.

A. Our Approach

Our goal is to capture the audio stream from the Kinect

sensor’s microphone array without losing any information.

We have to store the audio stream and the information

about beam forming and source localization with proper

synchronization with the original stream as if it comes

from the microphone array when someone use the stored

audio data later. In our approach we write the audio data

in “.wav” format because it is a standard audio format used

in Windows and we have stored the source information in a

separate file. In our approach we save the beam angle, source

angle, and the level of confidence of source angle when there

is a change in either angle with proper timestamps.

B. Capture the Audio Stream

First, we have to create an object to manage the Kinect’s

microphone array. Microsoft has provide a class in its

NUI API named “KinectAudioSource” to manage the

functionality for microphone array. We can use it to cap-

ture the audio stream and write the data stream into

a “.wav” file. We made the thread priority highest for

this program. To start the recoding we call the function

KinectAudioSource :: Start() and we record the audio

stream until the total recoding time passes. Here we record

the audio at a sample rate of 16 KHz. The RIFF (Resource

Interchange File Format) format was created by Microsoft

and is used by many applications like Windows, Corel Draw,

5

Do Nothing

Initialize:

currentFrameIndex = 0

No changes occured in the Video Data

is skip = true ?

Changes occured in the Video Data

skip = false

if(skippedFrame == numberOfFrameToSkip)

SkippedFrame++

Skip the Frame

No

currentFrameIndex++

Get the Video Frame

Yes

is currentFrameIndex % framesBetweenKeyFrames = 0 ?

Build Dictionary for LZW compression

Save the Dictionary and the Frame

Yes

(write to the buffer)

Compress the frame using LZW compression algorithm

and

Write to buffer
No

numberOfFrameToSkip = 1

skip = false

skippedFrame = 0

framesBetweenKeyFrames = 100
framesBewteenSkippedFrames = 10

skip = true

if(currentFrameIndex % framesBetweenSkippedFrame == 0)

Figure 3. Capturing video data.

etc. We present the RIFF format and the values we used in

its header in Table II.

C. Storing Audio Information

In this section we describe how we store the audio source

information. We construct a class named AudioData for

this purpose. The short description for AudioData is given

below:

class AudioData{public :
double sourceAngle, beamAngle, confidenceSource;
int64 ticks;};
Here the sourceAngle, beamAngle attributes are self

explanatory. The confidenceSource is the confidence level

of the source ranging from 0 to 1 as provided by the

NUI API specifications. The last attribute ticks is the

elapsed ticks after the previous entry of the changing of

source or beam angle. A single tick represents one hundred

nanoseconds or one ten-millionth of a second. There are

10,000 ticks in a millisecond as specified in the .NET

documentation. The data type for tick is 64 bit integer for

storing large value. Now we monitor the source direction.

When there is change in the either angle we store in the

file with the time elapsed after the last change. In this way

we can store the complete information of the audio data.

We can retrieve the audio information in the same way for

video and skeleton data, as mentioned in earlier sections.

VIII. CONCLUSION

In this paper we have presented a novel approach for

making a Kinect device emulator for Windows platform. Our

system can record raw data streams from a real Kinect device

and later everyone can use that offline data to experiment

with their own application without having a Kinect device.

This will greatly enhance group research and development

activities as we no longer require a physical Kinect device

for every member of the group. Users worldwide can down-

load our emulator code with documentation to use it from

[7]. A video demonstration showing the usability of our

emulator can be found in [8]. We are now looking forward

to improve our emulator further from the user feedbacks we

receive.

REFERENCES

[1] “http://venturebeat.com/2012/01/09/xbox-360-sur-passed-
66m-sold-and-kinect-has-sold-18m-units/”, Tak ahashi, Dean
(January 9, 2012). “Xbox 360 surpasses 66M sold and Kinect
passes 18M units”. Retrieved June 13, 2012.

[2] “http://brandynwhite.com/ fakenect-openkinect-driver -
simulator-experime”, Last accessed : May 25, 2012.

[3] L. Gallo, A. P. Placitelli, and M. Ciampi. Controller free
exploration of medical image data: Experiencing the Kinect.
In Proc. CBMS, pages 1–6, 2011.

[4] Programming Guide Kinect SDK, Microsoft Research.

[5] R. R. Noel, A. Salekin, R. Islam, S. Rahaman, R. Hasan, and
H. S. Ferdous. “A natural user interface classroom based on
Kinect”. In IEEE Learning Techn- ology Newsletter, volume
13, October 2011.

[6] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Effici- ent
model-based 3d tracking of hand articulations usi- ng Kinect.
in Proc. BMVC, 2011.

[7] “https://github.com/sazzad114/KinectEmulator”, Code reposi-
tory for the Kinect emulator.

[8] “https://sites.google.com/site/htibuet/kinect-emulator”, The
Kinect Emulator Project Page. .

6

View publication statsView publication stats

https://www.researchgate.net/publication/261351606

